Semi-parametric copula sample selection models for count responses
نویسندگان
چکیده
منابع مشابه
Semi-parametric Inference for Copula Models for Truncated Data
We investigate the dependent relationship between two failure time variables that truncate each other. Chaieb, Rivest, and Abdous (2006) proposed a semiparametric model under the so-called “semi-survival” Archimedean-copula assumption and discussed estimation of the association parameter, the truncation probability, and the marginal functions. Here the same model assumption is adopted but diffe...
متن کاملSemi-parametric Quantile Regression for Analysing Continuous Longitudinal Responses
Recently, quantile regression (QR) models are often applied for longitudinal data analysis. When the distribution of responses seems to be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. In this paper, a semi-parametric quantile regression model is developed for analysing continuous longitudinal responses. The error term's distribution is assumed to be Asymmetr...
متن کاملUnified variable selection in semi-parametric models.
We propose a Bayesian variable selection method in semi-parametric models with applications to genetic and epigenetic data (e.g., single nucleotide polymorphisms and DNA methylation, respectively). The data are individually standardized to reduce heterogeneity and facilitate simultaneous selection of categorical (single nucleotide polymorphisms) and continuous (DNA methylation) variables. The G...
متن کاملVariable selection in semi-parametric models.
We propose Bayesian variable selection methods in semi-parametric models in the framework of partially linear Gaussian and problit regressions. Reproducing kernels are utilized to evaluate possibly non-linear joint effect of a set of variables. Indicator variables are introduced into the reproducing kernels for the inclusion or exclusion of a variable. Different scenarios based on posterior pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2016
ISSN: 0167-9473
DOI: 10.1016/j.csda.2016.06.003